
{ JAVASCRIPT C H E A T S H E E T}

INTRODUCTION TO JAVASCRIPT

- Introduction

• JavaScript is the language that powers the web through dynamic behaviour
• Alongside HTML and CSS, it is the core technology that makes the Web run.
• console.log() → prints the message

- Comments

• Single Line Comments - created with forward slashes //.
// this is a single-line comment

• Multi-Line Comments - created with /* and */.
/* This is a multi-line comment.
It spans multiple lines. */

- Arithmetic Operators
Let’s take as an example a=10 and b=20:

Operators Description Example
+ Addition a + b // Returns: 30
- Subtraction a - b // Returns: -10
* Multiplication a * b // Returns: 200
/ Division b / a // Returns: 2
% Modulo a % b // Returns: 0
** Exponential a ** b // Returns: 1020

// Floor Division 9 // 2 // Returns: 4

- String Interpolation

• String Interpolation: Inserting variables into strings using template literals (backticks ‘).
let name = "Alice";
let greeting = ‘Hello, my name is ${name}.‘;
console.log(greeting); // Output: Hello, my name is Alice

- Assignment Operators
An assignment operator assigns a value to its left operand based on the value of its right operand.
Let’s take an example a = 10

Operator Description Example
+= Addition Assignment a += 3; // a is now 13
-= Subtraction Assignment a -= 5; // a is now 5

*= Multiplication Assignment a *= 2; // a is now 20
/= Division Assignment a /= 4; // a is now 2.5

- Logical Operators
It takes two values (conditions) and returns boolean depending on the operator used.

A B A && B A || B !A
true true true true false
true false false true false
false true false true true
false false false false true

VARIABLE AND SCOPE

- Variable
Variables are used to store a piece of data.

- Declare Variable

• var → is used to declare a variable in pre-
ES6 versions of JavaScript.
var age;
age = 23; //age assigned a
value 23

• let → declare a variable that can be reassig-
ned.

let weight;
weight = 30; //assigned a value
to variable weight

• const → declare a variable with a constant
value and cannot be reassigned.
const number = 30;
//number cannot be reassigned

- Scope
Scope defines where variables and functions can
be accessed.

• Global scope → a value/function that can
be used anywhere in the entire program.

var globalVar = "I am global";
function checkGlobalScope() {

console.log(globalVar);
// accessible here

}
console.log(globalVar); //
accessible here too

• Block Scope → only accessible within a {...}
code block.

{
let blockVar = 20;
console.log(blockVar);

// accessible here
}
console.log(blockVar);
// ReferenceError: blockVar is
not defined

DATA TYPES

- Primitive Data Types
Primitive Data types are the basic data types that
are built-in in JavaScript.

• Number → represents both integer and
floating-pointer numbers
let num1 = 42;
let num2 = 3.14

• String → represents a sequence of charac-
ters
let str = "hello world";

• Boolean → represents true or false values.
let isApple = true;
let isApple = false;

• Undefined → represents a variable that has
been declared but not assigned a value.
let x;
console.log(x);
//output: undefined

• Null → represents the absence of value
let y = null;

• Symbol → represents unique identifier.
let sym = Symbol("unique");

• BigInit → represents integers with arbitrary
precision.
let bigInt =
123456789012345678901234567890n;

Non-Primitive (reference) Data Types
Non-primitive data types are not built-in in Ja-
vaScript but are user-defined.

• Objects → represents collections of proper-
ties and methods.
let person = {

firstName: "John",
lastName: "Doe",
fullName: function() {

return this.firstName +
¨¨ + this.lastName;

}
};
console.log(person.firstName);
// Output: John
console.log(person.fullName());
// Output: John Doe

{ JAVASCRIPT C H E A T S H E E T}

CONTROL FLOW
It determines the order in which statements are executed in a program.
- Comparison Operators

It compares two values and returns a boolean (true or false).
Operators Description Example
== Equal 5 == 5; // Output: true
!= Not equal 5 != ’5’; // Output: false
=== Strict equal 5 === 5; // Output: true
!== Strict not equal 5 !== ’5’; // Output: true
> Greater than 5 > 3; // Output: true
< Less than 5 < 3; // Output: false
>= Greater than or equal 5 >= 5; // Output: true
<= Less than or equal 5 <= 5; // Output: true

- If - Else Statement

• if → executes a block of code within it’s body if a specified condition is true.
let x = 10;
if (x > 5) {

console.log("x is greater than 5");
}
// Output: x is greater than 5

• else → executes a block of code if the specified condition is false.
let y = 3;
if (y > 5) {

console.log("y is greater than 5");
} else {

console.log("y is 5 or less");
}
// Output: y is 5 or less

• else if → tests alternative conditions and execute if the condition is true.
let z = 7;
if (z > 10) {

console.log("z is greater than 10");
} else if (z > 5) {

console.log("z is greater than 5 but less than or equal to 10");
} else {

console.log("z is 5 or less");
}
// Output: z is greater than 5 but less than or equal to 10

- Ternary Operators
Shorthand of if-else statement for binary (two conditions) decisions. If condition evaluates to truth,
the first expression is executed, otherwise, the second expression is executed.
let a = 8;
let result = (a > 5) ? "a is greater than 5": "a is 5 or less";
console.log(result);
// Output: a is greater than 5

SWITCH AND LOOPS

- Switch Statement
Switch statement allows to check an expression
against multiple case clauses. If no case matches,
then default case is executed
let food = "salad";
switch (food) {

case "oyster":
console.log("Taste of sea");
break;

case "pizza":
console.log("Delicious pie");
break;

default:
console.log("Enjoy your meal.);

}
//output: Enjoy your meal

- For Loop
Executes a block of code as long as condition is
true.
It has three important instructions initialisation,
stopping condition and iteration;
for (let i = 0; i < 4; i += 1) {

console.log(i);
}
//output: 0, 1, 2, 3

- Do While Statement
Executes a block of code once, and then repeats
the loop as long as the specified condition is true.
let i = 0;
do {

console.log(i);
i++;

} while (i < 5);
// Output: 0 1 2 3 4

- While Loop
Loops through a block of code as long as the spe-
cified condition is true.
let i = 0;
while (i < 5) {
console.log(i);
i++;
}
// Output: 0, 1, 2, 3, 4,

FUNCTIONS
It is a reusable set of statements to perform a task
or calculate a value

- Function Declaration
A function is declared using function keyword,
function name, set of parentheses () and
enclosed in set of curly braces {}

function greeting() {
console.log(Hello there");

}
greeting() //calling the function
//output: Hello there

- Function Parameters and Arguments
Paramters are inputs to function when it is decla-
red.
Arguments are values passed in when function is
called.

function addNumbers(num1, num2) {
return num1 + num2;

}
addNumbers(3, 4); //function called
//output: 7

- Anonymous functions
Functions that do not have name property.

const greetings = function() {
console.log("Hello World");

}
greetings(); //output Hello World

- Arrow Functions
It was introduced in ES6 and has arrow function
express instead of function keyword.

const sum = (num1, num2) {
return num1 + num2;

}
console.log(sum(3, 7)) //output 10

