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1 Assignment Pipeline

1.1 Introduction

Boiling Liquid Expanding Vapour Explosions (BLEVEs) are hazardous and extremely
dangerous events that frequently occur during the transportation of Liquefied Petroleum
Gas (LPG) [1]. When the liquid inside a tank exceeds its boiling temperature, the result-
ing pressure causes the tank to rupture, leading to an explosion [1][2]. Numerous human
fatalities and significant destruction to infrastructure in the vicinity have been reported
due to such explosions. Several studies have been conducted to analyse, monitor, and
predict the occurrence of BLEVEs.

Recent advances in machine learning techniques have enabled the development of predic-
tive models to analyse when and how such explosions might occur, as well as the factors
contributing to them. Accordingly, this assignment performs a predictive analysis of the
peak pressure generated by BLEVEs. An obstacle equipped with 27 sensors was used to
detect the pressure from various perspectives, as illustrated in the Figure 1. The data was
cleaned, processed, and fitted to various machine learning algorithms, ranging from simple
linear regression to advanced XGBoost methods. Among all the models, the CatBoost
Regressor, after hyperparameter tuning, performed the best, achieving a mean absolute
percentage error of 0.12 on the validation set and 0.21523 on the testing set in Kaggle.

Figure 1: BLEVE blast with sensors fitted for data collection

1.2 Data Split

The data was split into following sets with ratio of (80% for training set, 20% validation
set and separate test provided) as follows:

1. Training set - for training the data

2. Validation set - for evaluating the model

3. Test set - the separate test data for the final evaluation of the performance of the
model on Kaggle.

Table 1 shows the distribution of data into training, validation, and test set.

1.3 Data Preprocessing

Table 2 shows the number of null values each feature contained. Initially, the null values
were replaced with average value, but after fitting the model, there was not a significant

2



Dataset # of Data
Training Data 7912
Validation Data 1978
Testing Data 3203

Table 1: Data distribution after feature selection.

improvement. Instead of replacing with average value, all the null values were removed
from the dataset all together.

Feature Null Count
Liquid Ratio 9
Tank Width (m) 7
Tank Length (m) 5
Tank Height (m) 8
BLEVE Height (m) 10
Vapour Height (m) 9
Vapour Temperature (K) 28
Liquid Temperature (K) 28
Obstacle Distance to BLEVE (m) 8
Obstacle Width (m) 8
Obstacle Height (m) 8
Obstacle Thickness (m) 8
Obstacle Angle 8
Status 8
Liquid Critical Pressure (bar) 28
Liquid Boiling Temperature (K) 27
Liquid Critical Temperature (K) 29
Sensor ID 8
Sensor Position Side 10
Sensor Position x 7
Sensor Position y 9
Sensor Position z 7
Target Pressure (bar) 6

Table 2: Number of null values for each feature before cleaning

Most of the features were highly skewed and had higher variance. For example, for the
Tank Failure Pressure (bar), the mean was 37.45 and the maximum was 4882.57. This
suggests higher variability and the presence of outliers. Instead of removing the outliers,
outlier detection using interquartile range (IQR) was used. An upper bound was defined
as the 75th percentile + 1.5× interquartile range, whereas the lower bound was defined
as the 25th percentile − 1.5× interquartile range [3] (refer to Appendix 3.1). Any values
beyond the upper bound and lower bound were replaced with the upper bound and lower
bound respectively. This is to ensure that outliers do not affect the model’s performance.

The Status feature should contain only two values: Superheated and Subcooled, but
the raw data contained many variations:[“Superheated”, “Superheat”, “Subcooled”, “sub-
cooled”, “Saperheated”, “Subcool”, “Subcoled”, “superheated”]. All of these categories
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were changed to either superheated or subcooled to denote the two correct categories. The
categories were then encoded using the one-hot encoding method. Similarly, the feature
Sensor Position Side was one-hot encoded.

Linear regression assumes that target output is normal distribution. The response variable
(target pressure) is not normally distributed and skewed. To address this, the response
variable is log transformed using log1p. Figure 2 shows the data distribution and after
log1p transformation. This transformation effectively reduces skewness and produces
a more symmetric distribution. The log1p is particularly suitable as it accommodates
target pressure of 0 without undefined error (e.g., log(0)). Furthermore, monotonic log
transformation preserves the relationship between the response variable and features.

Figure 2: Log1p transformation

Not all the features were normalised, but only selected features, particularly ones that are
highly skewed and not on a similar scale. MinMaxScaler() was used to scale the features,
as standardisation assumes that the data is normally distributed. Feature scaling ensures
that one feature with higher values does not dominate over other features and increase
bias in the model’s predictions. Figure 3 shows the features and normalisation method
used.

Figure 3: Normalisation of the features

Lasso regression was used for selecting the features from total of 31 features after feature
engineering described in 1.4. Lasso does by reducing the coefficients of irrelevant features
to zero. Figure 4 shows coefficient values for all selected features.
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Figure 4: Lasso regression for feature selection

1.4 Feature Engineering

A total of 9 new features were created (augmented) using the available features. The
features augmented and their descriptions are as follow:

1. Tank Volume: Calculated as length × width × height. It describes the volume of
the container in which the liquid is stored.

2. Liquid Volume: Liquid ratio × tank volume. It is amount of liquid stored in the
container.

3. BLEVE Ratio: BLEVE height divided by tank height to give a relative measure
of BLEVE to tank height. A larger BLEVE ratio might indicate large explosion

4. Obstacle Volume: Width × height × thickness of the obstacle. If the obstacle
volume is larger, the target pressure the obstacle detect might be higher.

5. Vapour Ratio: Calculated as Vapour height relative to the tank height.

6. Obstacle Distance Ratio: Relative distance from the BLEVE.

7. Delta Liquid-Boiling Temp: Difference between liquid temperature and its boil-
ing temperature. It describe how close the liquid is to the boiling temperature.

8. Critical Ratio: Ratio of critical temperature to the liquid temperature. It de-
scribes how close is the liquid to the supercritical where it might behave like non-
liquid.

9. Sensor Euclidean Distance: Distance based on sensor coordinates.

Lasso regression selected the following augmented features: tank volume, vapour ratio
to be associated with target pressure 4. In addition, these two features were found to be
affecting the model’s output. As per the visualisation on the SHAP value, tank volume
is the feature with the second strongest association with target pressure. As tank volume
increases, so does the target pressure, as it is positively associated, and so is vapour ratio,
although its impact is not as significant as the tank volume.
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1.5 Model Selection

The following models were selected for analysis and evaluated for predicting the BLEVE
target pressure:

1. Linear Regression: A baseline model for its simplicity and interpretability. It
helps to understand the linear relationships between the response variable and pre-
dictor variables. It is the simplest model.

2. Decision Tree Regressor: The relationship between the target pressure and other
factors is likely to be non-linear. The decision tree regressor is a simple model that
can capture non-linear relationships and can be easily interpreted. A baseline model
for non-linear relationships.

3. Random Forest Regression: It is an ensemble of decision trees and improves
generalisability and reduces overfitting while still being simple and interpretable due
to its tree structure. It also handles high-dimensional data better than a decision
tree, making it suitable for BLEVE with 30 plus features.

4. Support Vector Regressor (SVR): It is suitable for high-dimensional data and
can capture both linear and non-linear relationships through kernel functions. A
linear kernel captures linear relationships, a poly kernel captures non-linear rela-
tionships, and the radial basis function (RBF) can capture complex and non-linear
relationships, thus making it extremely flexible and easier to use for BLEVE pre-
diction.

5. XGBoost: A decision tree model is trained sequentially to minimise the loss func-
tion, allowing the model to learn from previous errors and improve accuracy over
time. Consequently, it improves performance and efficiency for smaller datasets.
It reduces overfitting and works well for tabular data, thus making it ideal for the
BLEVE prediction task with a tabular dataset.

6. CatBoost: Another boosting method effective for datasets with categorical values.
This model was ideal because most of the features were categorical despite being
numerical, such as sensor position side, which had values from 1 to 5, and other
features with only two binary values: liquid critical pressure (38 and 42), liquid
boiling temperature (-40, 0), and liquid critical temperature (100, 150). As the
data had a combination of both categorical and continuous values, it was ideal to
use CatBoost.

1.6 Hyperparameter Tuning

All the models were fitted with and without hyperparameter tuning except linear re-
gression. Two hyperparameter tuning methods were used depending on the number of
hyperparameters. If the model contained many hyperparameters, then Randomized-
SearchCV used instead GridSearchCV. For XGBoost and CatBoost, Randomized-
SearchCV was used as there were many hyperparameters and training required signif-
icant computational resources. Table 3 shows hyper parameters tuned, search strategey,
range, and optimal values found for each model

6



Model Hyperparameters Search Strategy
and Range

Optimal values

Decision Tree max depth
max features
min samples split
min samples leaf

Grid Search
5-fold CV

max depth: 20
max features: None
min samples leaf: 1
min samples split: 2

Random Forest max depth
max features
n estimators

Grid Search
5-fold CV

max depth: 25
max features: sqrt
n estimators: 55

Support Vector C
epsilon
kernel

Grid Search
5-fold CV

kernel: rbf
epsilon: 0.01
C: 10

XGBoost learning rate
max depth
n estimators
subsample
colsample bytree
gamma
reg alpha
reg lambda
min child weight

RandomizedSearchCV
5-fold CV
100 iterations

subsample: 0.7
reg lambda: 0.5
reg alpha: 0.1
n estimators: 400
min child weight: 5
max depth: 9
learning rate: 0.03
gamma: 0
colsample bytree: 1.0

CatBoost iterations
learning rate
depth
l2 leaf reg
bagging temperature
random strength

RandomizedSearchCV
3-fold CV
20 iterations

iterations: 1000
learning rate: 0.1
depth: 8
l2 leaf reg: 9
bagging temperature: 1
random strength: 1

Table 3: Hyperparameter Tuning Summary for all the models

1.7 Model Comparison

All the models were evaluated on three metrics: R2, Mean Squared Error, and Mean
Absolute Percentage Error. R2 indicates how well the model fits the data and how it
explains the variability of the data. MSE is the average of the squared differences between
predicted values and actual values. MAPE is the average percentage error relative to
the actual values over all the observations/data. Table 4 and 5 shows the performance of
each of this model pre and post hyperparameter tuning.

Model R2 MSE MAPE
Decision Tree 0.86 0.01 0.23
Random Forest 0.81 0.12 0.31
Support Vector (SVR) 0.19 0.05 0.86
XGBoost 0.96 0.00 0.17
CatBoost 0.93 0.00 0.20

Table 4: Model Performance Before Hyperparameter Tuning
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Model R2 MSE MAPE
Decision Tree 0.85 0.01 0.22
Random Forest 0.89 0.01 0.25
Support Vector (SVR) 0.39 0.04 0.50
XGBoost 0.97 0.001 0.13
CatBoost 0.98 0.00 0.12

Table 5: Model Performance After Hyperparameter Tuning

Abbreviations:

• R2: Coefficient of Determination

• MSE: Mean Squared Error

• MAPE: Mean Absolute Percentage Error

Before hyperparameter tuning, XGBoost performed the best on the validation set with
R2=0.96, MSE=0.00, and MAPE=0.17. MSE suggests the model is likely overfitting.

After hyperparemter tuning, CatBoost regressor performed the best on the validation
set with R2=0.98, MSE=0.00, and MAPE=0.12.

Both these models were compared on the testing dataset in Kaggle. CatBoost outper-
formed XGBoost with MAPE=0.215 to MAPE=0.241.

1.8 Model Interpretation

CatBoost regressor was selected for model interpretation as it performed the best on
the validation set with MAPE=0.12 despite the model likely to be overfitting over the
models.

1.8.1 Global Interpretation

Shapley value is used to analyse how each feature contribute to the model’s output. Fig-
ure 5 shows the SHAP value for each feature and how it impact’s model output.

Of all the features, the top three that have the highest impact on the model output are
Sensor Position Side, Tank Volume, and Sensor Position Y. In general, features
related to sensor positions, including Sensor Position X, Y, and Z, tend to have the most
significant influence on the model’s output. For Sensor Position Side, the impact varies:
extreme values (either very high or very low) tend to increase the model output, while
values within a certain intermediate range have less impact. Tank Volume positively
correlates with the output—higher values increase the predicted output, and lower values
decrease it. In contrast, higher values of Sensor Position Y decrease the model’s output,
and lower values increase it.
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Figure 5: Shapley values for each feature

Figure 6 visualisation of importance of features.

Figure 6: Feature Importance plot

A Partial Dependence Plot (PDP) is used for modelling the marginal effect of each feature
on the predicted outcome. Instead of consider all the features, only the top five features
are considered which are as follows:

• Sensor Position Side

• Tank Volume
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• Sensor Position Y

• Sensor Position X

• Vapour Height (m)

Figure 7 shows the marginal effects of the top five features for CatBoost mode’s prediction.
As illustrated in the figure, effects of each feature are:

1. Sensor Position Side: As the position of the sensor changes, there is massive
fluctuation in the target pressure.

2. Tank Volume: As the tank volume increases, so does the target pressure.

3. Sensor Position Y: When the sensor position value is less than 0, target pressure
seems to increase; however, for values greater than 0, the target pressure decreases.

4. Sensor Position X: The target pressure decreases as the sensor position X in-
creases.

5. Vapour Height: As vapour height increases, so does the target pressure up to 1.5;
beyond that, the target pressure remains almost the same.

Figure 7: Partial Dependency Plot for top 5 features
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1.8.2 Local Interpretation

Three instances of CatBoost model’s prediction were selected for local interpretability
namely; (1) lowest predicted target pressure, (2)highest predicted target pres-
sure and (3) largest error. The lowest predicted target pressure is 0.01. Figure 8 shows
the features that contribute to the lowest predicted target pressure. As shown in the fig-
ure, Sensor Position Side, Vapour Height, Sensor Position Y, and Tank Volume
are all pushing the target pressure below the baseline where as Sensor Position X and
Sensor Position Z is pushing the values above baseline of 0̃.253.

Figure 8: Features Contributing to Lowest Predictions

Figure 9 shows the features responsible for the highest predicted target pressure. There is
no noticeable feature that is negatively associated for that instance, while features Tank
Length, Tank Volume, Vapour Height, Sensor Position Y, Sensor Position Z,
Sensor Position X, and Sensor Position Side push the predicted outcome above the
baseline

Figure 9: Largest Predicted Target Pressure Instance

Figure 10 shows the largest error predicted by CatBoost Model. Sensor Position x
and Sensor Position z pushes the prediction above the baseline while Sensor Position
Side,Vapour Height (m), Sensor Position y and Tank Volume pushes the volume
below the baseline.

Figure 10: Largest Error Instance
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The model’s largest error is 0.01, which indicates the model is overfitting for the training
dataset and validation set. This is further evidenced by lower performance on the testing
data in Kaggle. Neural network or transformer-based models are likely to perform better
than the models discussed in the report.
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2 Extended Discussion

2.1 Question 1

Prior to this course, my understanding of interpretability was limited to explaining the
outcome of a model. For example, in a linear regression model with the equation y =
5 + 2x1 + 5x2, I interpreted the model as indicating that Y increases by 2 units for every
unit increase in X1 and by 5 units for every unit increase in X2. However, I had not
questioned why the coefficient for X1 was 2 and for X2 was 5. Through this course, I have
come to understand that interpretability extends beyond reading coefficients and involves
exploring how each feature influences the response variable. Tools like SHAP values have
helped me appreciate how individual features contribute to a model’s predictions, and I
have also learned how local interpretability techniques can reveal the reasoning behind a
model’s decision in a specific instance.

One of the most insightful finding I gained is that interpretability is not a fixed property.
Instead, it must be tailored to the needs of different users or audiences. While inter-
pretability is generally defined as the extent to which a human can understand a machine
learning model’s decision-making process, it must also comply with domain-specific con-
straints to be truly meaningful [4]. The requirements for interpretability vary depending
on the problem context, domain, and target users. For instance, in clinical applications,
the model must be interpretable to healthcare professionals such as doctors and clinicians,
even if it is not understandable to the general public. Furthermore, I now recognise the
critical importance of interpretability in addressing the black-box nature of many machine
learning models. It ensures that ML systems are safe, fair, transparent and accountable
to use.

2.2 Question 2

Target pressure is defined as the maximum pressure experienced at the centre of an ex-
plosion or at a designated reference point, such as an obstacle, as used in the assignment.
While target pressure provides valuable insight into the severity of a blast, it does not
capture the full scope of the explosion’s effects. Specifically, it overlooks the total energy
released, the presence of flames in case of combustion, and the thermal radiation emitted.
For example, Laboureur et al. [5] examined blast characteristics, focusing on blast wave
generation and propagation instead of focusing on target pressure.

BLEVEs are extremely hazardous to human life and can inflict severe damage to infras-
tructure. Therefore, rather than predicting target pressure at a specific point, estimating
the destruction radius or the extent of blast wave propagation may provide more practical
and safety-relevant information. By analysing the destruction radius, it becomes possible
to determine appropriate safety distances for storing tanks carrying Liquefied Petroleum
Gas (LPG), both during transportation and at rest.

For the research, experiments could be conducted at multiple scales. These experiments
would record variables such as the mass of the liquid, tank volume, total energy released,
and distances at which destructive pressure levels are observed. A potential research
question is what are factors that most significantly influence the blast destruction radius,
and how can interpretable machine learning models predict it?
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2.3 Question 3

The topics I think that would have been helpful and needed further investigation are:

1. Advanced data processing technique and pipelines: The course provides
excellent coverage of machine learning algorithms and the architecture of various
models. However, I would have appreciated a deeper exploration of advanced data
preprocessing pipelines and how they are implemented in real-world applications.
One of the slides mentioned that, in practice, nearly 70% of the effort in building
ML systems is spent on data preprocessing. More practical activities on these these
pipelines would have enhanced our understanding of how it works in real world
practice and implemented. For instance, I understood more on how important
data distribution, data preprocessing, and data processing methods are for building
models during assignment.

2. Application of Transformers in Large Language Models: LLMs have gained
significant attention in recent years and are used across a wide range of applica-
tions. While the course touched upon transformers, understanding application of
transformers in LLMs would have enhanced my understanding of the models.More
importantly, how do we define and evaluate interpretability for such large models,
both globally and locally? Understanding this would help users assess the safety,
reliability, and correctness of outputs generated by LLMs.
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3 Appendix

3.1 Outlier Detection Method: Inter Quartile Range

#ou t l i e r look
#Use IQR − i n t e r−qu a r t i l e range to f i l l in the va lue s f o r o u t l i e r s
de f r e p l a c e o u t l i e r s ( data ) :

f o r c o l in data . columns :
i f c o l not in [ ’ Target Pres sure ( bar ) ’ , ’ Status ’ ] :

q1 = data [ c o l ] . quan t i l e ( 0 . 2 5 )
q3 = data [ c o l ] . quan t i l e ( 0 . 7 5 )
i q r = q3 − q1 # Correct IQR ca l c u l a t i o n
# pr in t ( f ”IQR f o r { c o l } : { i q r }”)

#return output
lower bound = q1 − 1 .5 ∗ i q r
upper bound = q3 + 1 .5 ∗ i q r
data [ c o l ] = data [ c o l ] . apply ( lambda x : q1 i f x < lower bound e l s e q3 i f x > upper bound e l s e x )
re turn data

r e p l a c e o u t l i e r s ( t r a i n da t a )
# data . d e s c r i b e ( )
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